
P H O T O A B S O R P T I O N  C O N V E C T I O N  IN C A V I T I E S  

B. M. B e r k o v s k i i  a n d  E .  F .  N o g o t o v  UDC 536.25:538.345 

An economical  f in i te -d i f ference  s y s t e m  is  given for  solving p rob lems  in convection 
caused by absorp t ion  of radiat ion.  Threshold effects  a r e  predicted and examined in de-  
tail. 

The passage  of an e lec t romagne t ic  wave through a ma te r i a l  is accompanied  by absorpt ion ,  i .e . ,  i r -  
r e v e r s i b l e  convers ion  of par t  of the radia t ion to heat,  which a l t e r s  the t e m p e r a t u r e  dis t r ibut ion in the m a -  
ter ia l .  A heavy fluid shows t he rm a l  convection due to gravi ta t ional  fo rces ,  and any change in t e m p e r a t u r e  
dis t r ibut ion due to the radiat ion a lso  a l t e r s  the s t ruc tu re  of the convection. Convective heat  t r an s f e r  in 
turn  tends to c o r r e c t  the t e m p e r a t u r e  and other dis tr ibut ions.  The convect ive phenomena r eac t  back  on the 
e lec t romagne t ic  waves  via the dependence of the d ie lec t r ic  constant  and magnet ic  suscept ib i l i ty  on the 
the rmodynamic  cha rac t e r i s t i c s ;  one gets  a complex pat tern  of in terac t ion  between the e lec t romagne t ic ,  
the rmal ,  and dynamic fields.  

Consider  the s t ruc tu re  and ra te  of the S teady-s ta te  convection caused in a heavy fluid by absorp t ion  
of e lec t romagne t ic  waves  in the v is ib le  f requency range.  We a s s u m e  that the boundar ies  of the region where  
the convection occurs  a r e  kept at a constant  t e m p e r a t u r e  or a r e  t he rma l ly  insulated and immobi le .  We 
call  the convection excited by light under such conditions photoabsorpt ion convection PAC. 

1. The p rob lem can be formula ted  mathemat ica l ly ,  because  the propagat ion of e lec t romagne t ic  
waves  in a m a t e r i a l  is descr ibed  by Maxwel l ' s  equations [1, 2]. In the optical  f requency range,  if the a b -  
sorpt ion  is not too s t rong,  one can use  instead of the v e r y  complex Maxwel l ' s  equations the s imple  r ay  or  
geomet r i ca l  optics ,  which is a good approximat ion  [3-6]. We give the following f o r m  to the bas ic  equa-  
tions for  the r a y  approximat ion.  The equation for  a r ay  path r = r(s)  is [4, 5] 

d-s ~ ds ) = V n '  (1) 

where  n is the r e f r ac t i ve  index; r is the radius  vec to r  of a point on the path; and ds is  an e lement  along the 
path. The intensi ty  change dI(s) along the path is  governed by two fac tors :  the change in a c ro s s  sect ion of 
the beam and absorp t ion  [4]: 

dl  (s) = I (s) dn - -  V* Lds 4- k l  (s) ds, (2) 
n 

$ 

L = .[ nds, (3) 
0 

where  k is absorp t ion  coefficient  and L is the eiconal.  

The following is the amount  of radia t ion energy  converted to heat: 

Q = (s) k,,o exp {--  i I(V 4 kl dz}. (4) 
0 

Convected heat  t r an s f e r  is  descr ibed  by equations r ep resen t ing  the conserva t ion  of energy  with a l -  
lowance for  the sou rces  of (4), together  with equations for  the conserva t ion  of m a s s  and momentum [7]. 
These  a r e  put not in genera l  f o rm but for  the following par t i cu la r  case .  
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Consider the two-dimensional  PAC in the horizontal  cavity of square c ross  section. The light beam 
is perpendicular to the surface  and uniformly il luminates the upper wall of the cavity x(y, x0, x~), x~ = 0. 
The walls a re  considered solid and t ransparent ,  while the liquid in the cavity is an absorbing one. The 
thermal  boundary conditions at the walls a re  assumed to be of two types: 1) all the walls a re  isothermal;  
2) the horizontal  boundaries have constant and identical tempera tures ,  while the side walls a re  thermal ly  
insulated. 

The dimensionless equations take the form: 

d2__L = [an,  _ x, an, ] 1 + 
dg ~ [ ~ x  ay j n .  - '  (5) 

Y 

L,  = n,  -[-.f n ,  ~/1 ~-x" dy, (6) 
I 

g 

1 

k = k0k., k. == 1 q- Hn@, B = ako, Hn = ~T,, 

Hk = a ~ [~gIo/(V~9c), L = L ,  an o, n = non,, (8) 

n, = 1 -~- HpO, e = (T - -  To)/T,, 

-- V20 + 0 § Q, ot p Uy (9) 

oo o( ) o /o , )+oo o,  1o, 
v ~  = - - ~ .  (11) 

We take as units of distances x and y, time t, current  function r and tempera ture  | the length of the side 
of a square a, the rat io a 2 / p ,  the kinematic v iscos i ty  v, and the quantity T ,  = p2 /g f ia  3, respect ively;  P is 
the Prandtl  number;  B is the optical depth; and Hk, Hp, and Hm are  pa ramete r s  charac ter iz ing  the in- 
tensity of the radiation energy, and the dependence of the absorption and ref rac t ion coefficients on t em-  
perature.  The following a re  the boundary conditions for the cur rent  function and tempera ture  at  the bound- 
a r ies  F: 

a) 0 (r) = O, (12) 
u (r) = v (r) = o, 

b) @~(0, y ) = O ~ ( 1 , g ) = O ,  @ ( x , O ) = O ( x ,  1 )=O.  (13) 

A study has a l ready been reported [9] for PAC without allowance for the react ion of the convection 
on the light propagation; this indicated the possibil i ty that there a re  threshold effects, one of which is here 
studied in detail. 

There is part icular  in teres t  in the PAC for thermally. insulated ver t ical  boundaries;  sys tem (5)-(13) 
for this c a s e  permits  a solution corresponding to nonisothermal  mechanical ly equilibrium state x = x0, r 
= 0, co = 0, | = | If the absorption coefficient is independent of temperature ,  the tempera ture  d i s t r i -  
bution takes the fo rm 

0 = B HK exp (--B) [1 -~- g (exp B - -  1) - -  exp (By)]. (14) 

The tempera ture  distribution of (14) shows that the maximum tempera ture  is attained within the cavity, 
which means that this mechanicalIy  equilibrium state may be unstable; in fact,  in the upper part of the 
cavity the tempera ture  distribution corresponds  to the well-known mechanical ly unstable state with heating 
f rom below. Convection can a r i se  in this part  of the cavity if the negative tempera ture  g~adient is suffi-  
ciently large.  Large tempera ture  gradients are  obtained as the incident intensity is ra ised,  so for o ther -  
wise constant conditions one expects instabiIity to a r i se  as parameter  Hk is increased.  

2. System (5)-(13) has been soIved numerieal Iy  by a method of grids;  the s teady-s ta te  solution was 
obtained by establishing all the charac te r i s t i c s  of the motion for t ~ ~. An approximation to the solution 
was derived with a finite number of points in the grid, which had coordinates x i = lax,  yj = j ay  and with 
a digitized t ime t n = nr, where i, j, and n a re  integers .  The grid was chosen square so that the grid 
pa ramete r s  in the x and y directions were equal, i.e., Ax = Ay = h. 
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To obtain a numer ica l  solution one f i r s t  uses  a f in i te -d i f ference  scheme  of va r i ab les  for  the d i r e c -  
tions of the p r e d i c t o r - c o r r e c t o r  type, in which the second der iva t ives  were  replaced by the ord inary  cen-  
t r a l  d i f ferences ,  while the f i r s t  de r iva t ives  with r e spec t  to space  were  approximated  by direct ional  d i f -  
f e r ences  with dist inct  d i rect ions;  however,  the calculat ions showed that the machine  t ime requi red  would 
be v e r y  substant ia l  before  the s t eady- s t a t e  solution was obtained on account  of f requent  r e s o r t  to ex terna l  
s to res .  

We then developed a f in i te -d i f ference  scheme that incorpora tes  the advantages  of i n t e g r a l - i n t e r -  
polation (balance) schemes  [11] and schemes  that use direct ional  de r iva t ives  [10, 12]. The bas ic  f ea tu res  
of the scheme may  be i l lus t ra ted  by r e f e r e n c e  to Eq. (9). 

Consider  the region around some internal  node in the net (xi, yj); we in tegra te  (9) over  the r e f e r e n c e  
< x < x L, Y ~ --- y -< y~ +1),  with the t ime der iva t ive  a s sumed  constant within D and v o l u m e D ( x ~ _ ~ _  _ ~+2 i .~ 

equal to (0~/~t)i,  j. 

The second spat ia l  de r iva t ives  were  replaced  by centra l  d i f fe rences ,  which gave 

= p (O~+i j + Oi I j + Of,j+l + OL]- I  - -  40~.~)--h2Q h~ ~ -  , - ,  

2 2 2 2 --~-' 2 

I ,1_! (,, 

where  ~, 3,  T ,  and ~? can take the values  of e i ther  0 or  1. The choice of value is dependent on the sign 
of the veloci ty  between the cor responding  points in the grid (v x = ~r Vy = -Dr  If the ve loc i ty  is  
posit ive,  then one takes  the lef t  (lower) node; if the ve loc i ty  is  negative,  then one takes the r ight  (upper) 
node. This o rde r  of taking the nodes mee t s  m o r e  exact ly  the di f ference laws for  conservat ion,  which 
co r responds  to improved  d ivergence  in the scheme.  We rep lace  the values  of ~ in the f rac t ional  nodes by 
a qua r t e r  of the sum of the values  of ~ in the adjacent  in tegral  nodes, which gives 

1 
h 2 ( 0 0 1  = (A~+I,, ~ - T ) 0 ~ + 1 , - ~  (A i - l , j  ~ - T ) O f  l j  

\ Ot ]~,s " - '  

1 e 4 0  - .  + ~AfJ+l + p ] Oi j+l + , A i j - l  + -~  ] f,j--1 �9 -fi f.j - -  (A~+Lj + A~ 1 j + A~ j+l + Aij-1)O~j + h2Q, 

A i + l , j  = [(~)i+l.j-1 q- r  - - ~ i , j + l  - -  *i+l,j+l) ~- ll~f+l,j-1 + r  - -  *i,j+l - -  *i . l , j+l l] /8,  

Ai- l , ]  = [(~)i-l,j+l -~ ~~ - -  * i , j - i  - -  r ~- 1'i-1,]+1 -JF ~i,j+l - -  l~i,s-1 - -  r  

Ai,j+l = [(1~i+1,j+1 q- r  - -  * i - l , j  - -  r  ~- 1*i+1,1+1 ~ *f+l, j  - -  1~i-l,j - -  *i- l , j+l i] /8,  

Ai.j-1 = [(r + *i-x.j - -  *i+Ij ~ *i+:t.j-I) + / * i - x j - x  + *~ ~-Lj - -  r - -  *e+Lj-xl]/8- 

An analogous expres s ion  is obtained on integrat ing the equation for  the c i rculat ion;  the d i f fe rences  
lie only in the coefficients where  in place of 1 / P  we take unity, and a lso  in the source .  

We now integra te  the two equations with r e spec t  to t ime  with l imits  f r o m  tn to tn+ 1. The coeff icients  
and the sources  he re  a r e  a s sumed  to be constant throughout a t ime  step; the t e m p e r a t u r e s  and the c i r cu l a -  
t ions at  the nodes (xi +1, Yj) and (xi, yj +1) r e l a t e  to t ime  tn, while those a t  (x i_ t ,  yj) and (xi, y j_ t )  r e l a t e  
to t ime n + 1. As r e g a r d s  the node of (xi, yj), we obtain sufficient a c c u r a c y  in approximat ion  to the init ial  
equations for  | and co as  r ega rd s  the convective t e r m s  while taking them all  at a point tn+ l ,  while the c o r -  
responding diffusion t e r m s  a r e  taken as  d i f fe rences  between the points t n and tn+ 1. As a resul t ,  the equa-  
t ions for  the t e m p e r a t u r e  and c i rcula t ion  take the following f in i te -d i f ference  form:  

1 1 + 

• ~-  + -~- + A~§ + A~_1,i + A~,~+I + Am_~ (15) 
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m ' + ' -  { , , / --  (A*+IO + 1)C0i+1,i+ (Ai-LJ+ 1)r176 " + (Aij+ 1 "~- 1)%,i+: 

h 

--1.. 
+ 2 + A~+I, J + Ai_l, J + Aij+l + Aij -1 (16) 

H e r e  fo r  conven ience  in wr i t ing  the f o r m u l a s  we have in t roduced  the fol lowing symbol s :  + denotes  that  the 
value  of a funct ion is taken a t  t ime  t n + i ,  while the absence  of this s u p e r s c r i p t  ind ica tes  that  the funct ion 
is taken at tn. 

The boundary  condi t ions  fo r  r and for  the t e m p e r a t u r e  take the fol lowing fo rm:  

~,o = %,: = %,j = $:,i = O, 

a) Of .  0 : Oi .  J = 00.  j : O j . ]  = O, 

1 
(401.j--O=,j), O: d -~- (40j_l,i--Od_2,]), b) Oo. ] = ~  = 

(17) 

@i.o = 0~.: = O. (18) 

Unifor tunate ly ,  it was  imposs ib l e  to obtain exac t  ana ly t i ca l  e x p r e s s i o n s  fo r  the boundary  va lues  fo r  the 
c i r cu la t ion ;  f o r  co, the boundary  condi t ions  w e r e  obtained a p p r o x i m a t e l y  by expanding r y, t) as  a Tay lo r  
s e r i e s  nea r  the boundary .  F o r  the lower  boundary ,  fo r  example ,  they take  the f o r m  

r = 2h ~ , 

and the boundary  condi t ions  fo r  the o ther  boundar ie s  a r e  analogous .  

Sys t em (5)-(8), (11), (15), (16) with condi t ions  (17)-(19) was  solved in the fol lowing sequence.  We a s -  
s u m e  that  we know the va lues  of | co, and r a t  ins tan t  t n for  the whole reg ion ;  the next t ime  s tep  begins 
with ca lcu la t ion  of n .  and k . ,  fol lowed by ca lcu la t ion  of the path. F o r  this purpose ,  the R u n g e - K u t t a  m e t h -  
od is used to i n t eg ra t e  (5), and at  points Ym = m h / 2  (m = 1, 2, 3 . . . . .  2J) one d e t e r m i n e s  x and x '  with a 
se t  a c c u r a c y .  We find Q f r o m  (7). The def ini te  i n t eg ra l s  appea r ing  in the exponents  w e r e  ca lcu la ted  by 
S i m p s o n ' s  fo rmula .  Then l inea r  ex t rapo la t ion  was  used to extend the r e s u l t s  fo r  Q over  the nodes.  Af te r  
this ,  (15) enabled one to ca lcu la te  | over  al l  i n t e rna l  points in the region.  Then  f r o m  (8) we found co +. 
The new va lues  f o r  co w e r e  then in t roduced  into Eq. (11), which was solved by the method of upper  r e l a x a -  
t ion  [13]. Then  f r o m  {19) we ca lcula ted  the new boundary  condi t ions  fo r  w. 

In this  way, we obtained the d i s t r ibu t ion  of | co, and r fo r  t ime t n + l ,  f r o m  which one can  p roceed  
to the next t ime  step.  

To save  mach ine  t ime,  the va lues  of the Qi, j  w e r e  ca lcu la ted  at each  t ime only as  long as  they a l t e r ed  
by m o r e  than a se t  p ropo r t i on  (1%), and a f te r  this  they w e r e  c o r r e c t e d  only e v e r y  10 s teps  in t ime.  As the 
ini t ia l  a p p r o x i m a t i o n  fo r  t = 0 we usua l ly  a s s u m e d  e i the r  |  = ~ = e i , j  = 0 or  the va lues  of the quan -  
t i t ies  obtained fo r  o ther  va lues  of the p a r a m e t e r s  Hk, B, o r  P. The ca lcu la t ions  showed that the s t e a d y -  
s ta te  solut ion was  not dependent  on the f o r m  of the ini t ia l  app rox ima t ion  or  on the magni tude  of r. 

We examined  the s tab i l i ty  by Neumann ' s  method [14], which showed that the above d i f fe rence  s c h e m e  
is s table  fo r  r _< h2/2;  i t  is  r e a d i l y  shown that fo r  r ~ h 2 it a p p r o x i m a t e s  the ini t ial  s y s t e m  of (9) and (10) 
with an o r d e r  o (h). 

The r a t e  of a p p r o a c h  to the so lu t ion  was  cons ide rab ly  a c c e l e r a t e d  because  in each  t ime s tep f r o m  tn 
to tn+  1 we used a t  the points (xi_l,  yj), (xi, Y j - l )  and pa r t ly  at  (xi, Y0 the va lues  of O +, :o + a l r e a d y  c a l c u -  
lated fo r  t ime  tn+ l .  This  doubled the r a t e  of solution,  fo r  example ,  ~y c o m p a r i s o n  with the method of [,12]. 
Also,  it c o n s i d e r a b l y  r educed  the vo lume of mach ine  s to r e  because  the new values  | and co + can at once 
be wr i t t en  in place of | and co, r e spec t i ve ly ,  so the above  f in i t e -d i f f e r ence  s c h e m e  can be useful  fo r  c o m -  
puters  with sma l l  vo lumes  of opera t ive  s tore .  

All the ca lcu la t ions  w e r e  c a r r i e d  out with an  M-220 compu te r ;  the r e s u l t s  d i s cus sed  below w e r e  
obtained with a 21 • 21 gr id  (h = 0.05). The t ime s tep  was  cons tan t  at  r = 0 001, which provided good a c -  
c u r a c y  with r e a s o n a b l e  consumpt ion  of mach ine  t ime.  The a c c u r a c y  of the n u m e r i c a l  s c h e m e  was  checked 
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Fig. 1 
Fig. 1. Structure of convection (a, c) and tempera ture  profiles (b, 
d) with i sothermal  boundaries.  
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Fig. 2 
d) for B = 1, Hk = 102 (a, b); 106 (e, 

Fig. 2. Cmax (solid line) and | (dotted line) vs B for Hk = 102 (a) and logari thmic dependence of g'max 
on Hk for B = 1 (b). 

by performing calculations for the case of thermal ly  insulated side wails with Hk < Hk*; the solution 
agreed well with the analytical solution, which can be obtained for this case,  the difference being less than 
1%. 

3. The calculations were performed with the following values of the parameters :  

0 < P . ~ 2 ;  0~Hk-~106;  0 ~ B . ~ 2 ;  Hp=0;  Hn=0;10  -6. 

The isothermal  boundary conditions of (18a) cause a cellular convection to a r i se  in the cavity; Fig. 
1 shows the cur rent  lines (a, c) and the i sotherms (b, d} for B = 1 with P = 1, Hn = 0, Hk = 102 (a, b) and 
Hk = 10 ~ (c, d). Figure 1 shows that absorpt ion of light entering f rom above gives r i se  to two oval cells 
rotating in opposite direct ions,  which a re  symmet r ica l ly  disposed relat ive to the ver t ical  axis of the square 
and, as calculations show, they have forms that va ry  little with Hk and B. Only for Hk > 105 do the cen- 
te rs  of the squares  move appreciably towards the ver t ical  boundaries, and the ceils themselves r i se  
slightly at the same time. 

The i so therms  a re  closed lines approximating to c i rc les ;  their shape var ies  little as B goes f rom 
0 to 2. The position of @max move upwards somewhat as B increases ;  the upward shift in the maximum 
tempera ture  is observed also when Hk increases ,  and then for a sufficiently large Hk > 104 one gets two 
centers ,  when the tempera ture  attains maximal values (Fig. lb). 

Figure  2a shows how Cmax and | vary  with B for Hk = 102; these increase  monotonically with B, 
and the ra tes  of growth diminish appreciably.  Figure 2b shows the dependence of log~max on logHk for 
B = 1; for Hk < 105 the resul t  is a straight  line of slope 0.5, which corresponds  to a relat ionship of the 

fo rm Cmax ~ CB. 

In the threshold  problem of (18b) we found cr i t ical  values of Hk* for various values of B; Fig. 3a 
shows the dependence of ~max on Hk for var ious B (I corresponds  to B = 1; TI to B = 1.5; and III to B = 0.5). 
Figure 3a shows that, up to a cer ta in  Hk*, r  = 0, which means that there is no convection; fur ther  in- 
c rease  in Hk causes the convection to develop rapidly. The Hk* is ve ry  much dependent on B, as Fig. 3b 
shows; as B approaches  0, Hk* increases  considerably,  while increase  in B causes Hk to decrease ,  and 
for  B ~ 1.5 it attains its minimum, with fur ther  increase  in B causing Hk* again to increase ,  but much 
more  slowly than before. 
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Fig. 4. St ructure  of convection and t empe ra tu r e  profi le at  
hea t - insula ted  s ides  for  Hk = 1.1 �9 105 (a, b); 2- 105 (c, d); 3 
�9 105 (e,  f) (Hk* = 1.09. 105; B = 1 ) .  

Figure  4 shows cu r ren t  l ines (a, c, e) and i so the rms  (b, d, f) for  B = 1 of Hk of: a and b) 1.1 �9 105; c 
and d) 2 �9 105; e and f) 3.105. The i s o t h e r m s  a r e  s t ra igh t  lines para l le l  to the x axis  in the absence  of con-  
vection. There  is a local  r i s e  in t e m p e r a t u r e  at one of the boundaries  when Hk is reached;  as a rule ,  |  
is observed  on the r ight  boundary and co r re sponds  to convected motion in the counterclockwise  direction.  
There  a r e  a lso  cases  where  |  occurs  at  the left  wall,  and then the c i rcula t ion  is clockwise.  The sense  
of the convection is governed by purely  random fac tors .  Hk > Hk* gives c i rcu la r  convection (Fig. 4a); the 
i so the rms  r e m a i n  s t ra ight  l ines,  except  near  the center  (Fig. 4b). They become more  curved as  Hk in-  
c r e a s e s  and |  shifts;  a second cell  with opposite motion a r i s e s .  

Fu r the r  i nc rease  in Hk shifts  @max to the center ,  and we get the convection of Fig 4e and f, which is 
s table  for  a f a i r ly  la rge  range  in Hk; only for  Hk > 108 does one get osci l la t ions analogous to those of [15]. 
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