PHOTOABSORPTION CONVECTION IN CAVITIES

B. M. Berkovskii and E. F. Nogotov UDC 536.25:538.345

An economical finite~difference system is given for solving problems in convection
caused by absorption of radiation. Threshold effects are predicted and examined in-de-
tail.

The passage of an electromagnetic wave through a material is accompanied by absorption, i.e., ir-
reversible conversion of part of the radiation to heat, which alters the temperature distribution in the ma-
terial. A heavy fluid shows thermal convection due to gravitational forces, and any change in temperature
distribution due to the radiation also alters the structure of the convection. Convective heat transfer in
turn tends to correct the temperature and other distributions. The convective phenomena react back on the
electromagnetic waves via the dependence of the dielectric constant and magnetic susceptibility on the
thermodynamic characteristics; one gets a complex pattern of interaction between the electromagnetice,
thermal, and dynamic fields.

Consider the structure and rate of the steady-state convection caused in a heavy fluid by absorption
of electromagnetic waves in the visible frequency range. We assume that the boundaries of the region where
the convection occurs are kept at a constant temperature or are thermally insulated and immobile. We
call the convection excited by light under such conditions photoabsorption convection PAC.

1. The problem can be formulated mathematically, because the propagation of electromagnetic
waves in a material is described by Maxwell's equations [1, 2]. In the optical frequency range, if the ab-
sorption is not too strong, one can use instead of the very complex Maxwell's equations the simple ray or
geometrical optics, which is a good approximation [3-6]. We give the following form to the basic equa-
tions for the ray approximation. The equation for a ray path r =r(s) is [4, 5]

d { .dr
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where n is the refractive index; r is the radius vector of 2 point on the path; and ds is an element along the
path. The intensity change dI(s) along the path is governed by two factors: the change in a cross section of
the beam and absorption j4]:

d (s) = I(s)

o2
@X—L"M kI (5) ds, e

s

L= Y nds, (3)
0

where k is absorption coefficient and L is the eiconal.

The following is the amount of radiation energy converted to heat:

s .
Q(s) = kI (s) = &l (ning) exp {— | [(v*Lin) -+ &) dz}. (4)
. 0
Convected heat transfer is described by equations representing the conservation of energy with al-
lowance for the sources of @), together with equations for the conservation of mass and momentum {7].
These are put not in general form but for the following particular case.
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Consider the two-dimensional PAC in the horizontal cavity of square cross section. The light beam
is perpendicular to the surface and uniformly illuminates the upper wall of the cavity x(y, %, x§), x; = 0.
The walls are considered solid and transparent, while the liquid in the cavity is an absorbing one. The
thermal boundary conditions at the walls are assumed to be of two types: 1) all the walls are isothermal;
2) the horizontal boundaries have constant and identical temperatures, while the side walls are thermally
insulated.

The dimensionless equations take the form:
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We take as units of distances x and y, time t, current function ¢, and temperature ® the length of the side
of a square a, the ratio a®/v, the kinematic viscosity v, and the quantity T, = »2/gBa®, respectively; P is
the Prandtl number; B is the optical depth; and Hk, Hp, and Hm are parameters characterizing the in-
tensity of the radiation energy, and the dependence of the absorption and refraction coefficients on tem-
perature. The following are the boundary conditions for the current function and temperature at the bound-
aries I':

a) 8() =0, (12)

u(l)=o(l)=0,
b) 8,0, H=0,1,y=0, 6(x,0)=06(x,1)=0. (13)
A study has already been reported [9] for PAC without allowance for the reaction of the convection
on the light propagation; this indicated the possibility that there are threshold effects, one of which is here
studied in detail.

There is particular interest in the PAC for thermally-insulated vertical boundaries; system (5)-(13)
for this case permits a solution corresponding to nonisothermal mechanically equilibrium state x = x,, ¢
=0, w =0, ® =0(y). I the absorption coefficient is independent of temperature, the temperature distri-
bution takes the form

© = BHxexp(—8)[l + y(exp B — 1) —exp (By)]. (19

The temperature distribution of (14) shows that the maximum temperature is attained within the cavity,
which means that this mechanically equilibrium state may be unstable; in fact, in the upper part of the
cavity the temperature distribution corresponds to the well-known mechanically unstable state with heating
from below. Convection can arise in this part of the cavity if the negative temperature gradient is suffi-
ciently large. Large temperature gradients are obtained as the incident intensity is raised, so for other-
wise constant conditions one expects instability to arise as parameter Hk is increased,

2. Bystem (5)-(13) has been solved numerically by a method of grids; the steady-state solution was
obtained by establishing all the characteristics of the motion for t —«, An approximation to the solution
was derived with a finite number of points in the grid, which had coordinates x; = iAx, yj = Ay and with
a digitized time t;, =n7, where i, j, and n are integers. The grid was chosen square so that the grid
parameters in the x and y directions were equal, i.e., Ax = Ay =h,
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To obtain a numerical solution one first uses a finite-difference scheme of variables for the direc-
tions of the predictor —corrector type, in which the second derivatives were replaced by the ordinary cen-
tral differences, while the first derivatives with respect to space were approximated by directional dif-
ferences with distinct directions; however, the calculations showed that the machine time required would
be very substantial before the steady-state solution was obtained on account of frequent resort to external
stores.

We then developed a finite~difference scheme that incorporates the advantages of integral-inter~
polation (palance) schemes [11] and schemes that use directional derivatives [10, 12]., The basic features
of the scheme may be illustrated by reference to Eq. (9).

Consider the region around some internal node in the net (x;, yj); we integrate (9) over the reference
volume D(x , _ _; SXSE; Ly, 1 Sysy 1 ), with the time derivative assumed constant within D and
2 Iy 7

equal to (8@/81:)1,]'.“

The second spatial derivatives were replaced by central differences, which gave
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where o, 8, v, and n can take the values of either 0 or 1. The choice of value is dependent on the sign
of the velocity between the corresponding points in the grid (vx = &/8y, vy =—08)/08x). I the velocity is
positive, then one takes the left (lower) node; if the velocity is negative, tKen one takes the right (upper)
node. This order of taking the nodes meets more exactly the difference laws for conservation, which
corresponds to improved divergence in the scheme. We replace the values of ¢ in the fractional nodes by
a quarter of the sum of the values of y in the adjacent integral nodes, which gives
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An analogous expression is obtained on integrating the equation for the circulation; the differences
lie only in the coefficients where in place of 1/ P we take unity, and also in the source.

We now integrate the two equations with respect to time with limits from tn fo ty +4. The coefficients
and the sources here are assumed to be constant throughout a time step; the temperatures and the circula-
tions at the nodes (xj +4, yj and (xi, Yi+1) relate to time ty, while those at (xj_4, yj) and i, yj—y) relate
to time n +1. As regards the node of (xj, yj), we obtain sufficient accuracy in approximation to the initial
equations for @ and w as regards the convective terms while taking them all at a2 point ty 4, while the cor-
responding diffusion terms are taken as differences between the points ty and t, . ;. As a result, the equa-
tions for the temperature and circulation take the following finite-difference form:

-~ 1 1 +
8= { Ayt 5 ) B+ | A+ |8
1 1 h? 2 .
+ (Ai.]‘+1 + ?)ei.i+1 + (Ai.j——l + P ey, -1+ ( - p 8,; +H Q}

h? 2 -1
X {T +7 At A+ Az T A } ) (15)
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Here for convenience in writing the formulas we have introduced the following symbols: + denotes that the
value of a function is taken at time ty 14, while the absence of this superscript indicates that the function
is taken at tp.

The boundary conditions for ¢ and for the temperature take the following form:

’Lpi,() = 'q)i,J - lpo,j - ‘P_/,]- == Oi
2)0,,=0,,=6,;=0, =0, (17)

o1
by 6,; = 5 (48,;—6,)), 6, = (46, _1; =0, 00 ©io=8;,=0. (18)

1
3
Unifortunately, it was impossible to obtain exact analytical expressions for the boundary values for the
circulation; for w, the boundary conditions were obtained approximately by expanding ¢ (%, y, t) as a Taylor
series near the boundary. For the lower boundary, for example, they take the form

Slpigl _ 'lpi.z

%= T

and the boundary conditions for the other boundaries are analogous,

System (5)-(8), (1), (15), (16) with conditions (17)-(19) was solved in the following sequence. We as-
sume that we know the values of ®, w, and y at instant t, for the whole region; the next time step begins
with calculation of n, and k,, followed by calculation of the path. For this purpose, the Runge -Kutta meth-
od is used to integrate (5), and at points y;, = mh/2 (m =1, 2, 3, . .., 2J) one determines x and x' with a
set accuracy. We find Q from (7). The definite integrals appearing in the exponents were calculated by
Simpson's formula, Then linear extrapolation was used to extend the results for Q over the nodes. After
this, (15) enabled one to calculaie ®* over all internal points in the region. Then from (8) we found w™.

The new values for w were then introduced into Eq. (11), which was solved by the method of upper relaxa-
tion [13]. Then from (19) we calculated the new boundary conditions for w.

In this way, we obtained the distribution of ®, w, and ¢ for time ty 14, from which one can proceed
to the next time step.

To save machine time, the values of the Qj,j were calculated at each time only as long as they altered
by more than a set proportion (1%), and after this they were corrected only every 10 steps in time. As the
initial approximation for t = 0 we usually assumed either ®i,j Wi = 9i,j = 0 or the values of the quan-
tities obtained for other values of the parameters Hk, B, or P. The calculations showed that the steady-
state solution was not dependent on the form of the initial approximation or on the magnitude of r.

We examined the stability by Neumann's method [14], which showed that the above difference scheme
is stable for 7 < h/2; it is readily shown that for 7 ~ h? it approximates the initial system of (9) and (10)
with an order o (h).

The rate of approach to the solution was considerably accelerated because in each time step from tp
to tp .4 we used at the points (x;_4, yj), (i, yj—1) and partly at (xj, y;) the values of ®", w*already calcu-
lated for time tp+4. This doubled the rate of solution, for example, E)y comparison with the method of [12].
Also, it considerably reduced the volume of machine store because the new values ®% and w™ can at once
be written in place of ® and w, respectively, so the above finite-difference scheme can be useful for com-
puters with small volumes of operative store.

All the calculations were carried out with an M-220 computer; the results discussed below were
obtained with a 21 X 21 grid (h = 0.05). The time step was constant at 7 =0 001, which provided good ac-
curacy with reasonable consumption of machine time. The accuracy of the numerical scheme was checked
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Fig. 1. Structure of convection (a, ¢) and temperature profiles (b, d) for B =1, Hk =102 @, b); 10° (c,
d) with isothermal boundaries.

Fig. 2. Pmax (solid line) and ®,,, (dotted line) vs B for Hk = 10? (a) and logarithmic dependence of §1ax
on Hk for B =1 (b).

by performing calculations for the case of thermally insulated side walls with Hk < Hk*; the solution
agreed well with the analytical solution, which can be obtained for this case, the difference being less than

19%.
3. The calculations were performed with the following values of the parameters:
0<<P L2, 0« Hr £ 10% 0<<B < 2; Hp =0; Hn = 0;107%

The isothermal boundary conditions of (18a) cause a cellular convection to arise in the cavity; Fig.
1 shows the current lines @, ¢) and the isotherms (b, d) for B =1 with P =1, Hn =0, Hk =10% (2, b) and
Hk =10°% (c, d). Figure 1 shows that absorption of light entering from above gives rise to two oval cells
rotating in opposite directions, which are symmetrically disposed relative to the vertical axis of the square
and, as calculations show, they have forms that vary little with Hk and B. Only for Hk > 10° do the cen-
ters of the squares move appreciably towards the vertical boundaries, and the cells themselves rise
slightly at the same time, g

The isotherms are closed lines approximating to circles; their shape varies little as B goes from
0 to 2. The position of @y, 5% move upwards somewhat as B increases; the upward shift in the maximum
temperature is observed also when Hk increases, and then for a sufficiently large Hk > 10* one gets two
centers, when the temperature attains maximal values (Fig. 1b).

Figure 2a shows how g% 30d ®pay vary with B for Hk = 10%; these increase monotonically with B,
and the rates of growth diminish appreciably. Figure 2b shows the dependence of log#y,ax on log Hk for
B =1; for Hk < 10° the result is a straight line of slope 0.5, which corresponds to a relationship of the
form $pax ~ V B.

In the threshold problem of (18b) we found critical values of Hk* for various values of B; Fig. 3a
shows the dependence of ¥max on Hk for various B (I corresponds to B =1; Il to B =1.5; and III to B = 0.5).
Figure 3a shows that, up to a certain Hk*, ¥max = 0, which means that there is no convection; further in-
crease in Hk causes the convection to develop rapidly. The Hk* is very much dependent on B, as Fig. 3b
shows; as B approaches 0, Hk* increases considerably, while increase in B causes Hk to decrease, and
for B ~ 1.5 it attains its minimum, with further increase in B causing Hk™* again to increase, but much
more slowly than before.
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Fig. 4. Structure of convection and temperature profile at
heat-insulated sides for Hk =1.1-10° (@, b); 2-10° (c, d); 3
105 (e, ) (Hk* =1.09-10% B =1).

Figure 4 shows current lines (@, ¢, e) and isotherms (b, d, f) for B =1 of Hk of: a and b) 1.1-10% ¢
and d) 2-10%; e and f) 3-10°. The isotherms are straight lines parallel to the x axis in the absence of con-
vection. There is a local rise in temperature at one of the boundaries when Hk is reached; as a rule, ®max
is observed on the right boundary and corresponds to convected motion in the counterclockwise direction.
There are also cases where @,,, . occurs at the left wall, and then the circulation is clockwise. The sense
of the convection is governed by purely random factors. Hk > Hk* gives circular convection (Fig. 4a); the
isotherms remain straight lines, except near the center (Fig. 4b). They become more curved as Hk in-
creases and ®,q shifts; a second cell with opposite motion arises.

Further increase in Hk shifts ®,,4« to the center, and we get the convection of Fig 4e and f, which is
stable for a fairly large range in Hk; only for Hk > 10® does one get oscillations analogous to those of [15].
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